

Using Recycled Water to Irrigate Bay Area Landscapes

Nelda Matheny HortScience, Inc.

ABAG Workshop July 9, 2015

325 Ray St.
Pleasanton CA 94566
Nelda@hortscience.com

Too much salt may damage sensitive plants and degrade soils

A (very) brief science lesson

Plants transpire water

Salts are left behind in plant

Water evaporates from soil

Some salts are left behind in soil

Plants transpire water

Salts are left behind in plant

Water evaporates from soil

Some salts are left behind in soil

Salt concentration varies with soil moisture

Water in the soil solution

As soil dries, the salts become more concentrated.

Water + heat + salt stress

Degree of symptoms worse when plant heat and water stressed.

River birch

Water deficit may look like salt damage

Water deficit may look like salt damage

Foliage Analyses

Na %	1.32	0.77	0.13
CI, ppm	3200	1600	1500

Salinity is measured as electrical conductivity (EC)

Soil salinity

EC_e

Water salinity

 EC_{w}

www.pce-instruments.com

Salinity is measured as electrical conductivity (EC)

Soil salinity

EC_e

Water salinity

 EC_w

 $1.0 EC_{w} = 640 TDS$

Specific ions are very important!

Chloride Sodium Boron Na⁺ CI-

Bicarbonate affects equipment & pH

1. Water quality

Pre-use quality

Components added during use

Treatments applied

S.F. Bay Area Recycled Water Quality

Parameter	Range in concentration		
	Annual average	Annual maximum	
рН	6.8-7.8	7.1-8.8	
EC _w (dS/m)	0.44-0.95	0.68-1.66	
Sodium (mg/l)	75-211	117-220	
Chloride (mg/l)	64-315	182-328	
Bicarbonate (mg/l)	132-292	172-390	
SAR	3.6-5.6	4.0-6.0	
Boron (mg/l)	0.3-1.0	0.4-1.8	

Data compiled from agency reports; primarily from 2011

Water Quality Categories

Parameter	Category 1	Category 2	Category 3	Category 4
EC _w dS/m	<1.0	1.0-1.3	1.3-2.5	>2.5
Boron mg/I	<0.5	0.5-1.0	1.0-2.0	>2.0
Chloride mg/I	<120	120-200	200-350	>350
Sodium mg/I	<70	70-150	150-200	>200

Water Quality Categories

Parameter	Category 1	Category 2	Category 3	Category 4
EC _w dS/m	<1.0	1.0-1.3	1.3-2.5	>2.5
Boron mg/I	<0.5	0.5-1.0	1.0-2.0	>2.0
Chloride mg/I	<120	120-200	200-350	>350
Sodium mg/I	<70	70-150	150-200	>200

Good

Fair

Moderate Poor

S.F. Bay Area Recycled Water Quality Categories

- 2 1.0-1.3
- 3 1.3-2.5
- 4 >2.5

2. Plant salt tolerance

Low

Moderate

• High

3. Site conditions

Soil texture

 Problems more likely on clayey than sandy soil.

Soil salinity, pH

 Problems more likely if start with saline, high pH soil.

Drainage

 Can't manage salts if site doesn't drain.

ET demand

 Exposure to sun, wind, reflected heat

High temperatures

4. Irrigation

- Delivery system
- Is foliage wetted?
- How much and how often water applied

Introducing RW into existing landscape

 Conduct site assessment

 Establish soil salinity threshold

- Adjust maintenance practices
- Monitor plants and soils

Fix pre-existing problems

Ensure drainage

Repair equipment

Irrigation audit

Convert spray to avoid wetting foliage

Designing landscapes for RW

- Select plants with appropriate salt tolerance
- Evaluate soil characteristics and modify if needed
- Identify and solve drainage problems

Irrigation systems

- Meet health and safety regulations
- Use equipment for RW
 - Valves resistant to Cl
 - Low trajectory spray
 - Large orifice drip, filters
- Expect increased repair/replacement
- Less tolerance for poor distribution uniformity

Managing salt in landscapes

Leach to minimize salt accumulation

Wetting zone

Salt accumulation

Managing salt in landscapes

Leach to minimize salt accumulation

Apply heavy irrigation to move salts downward below roots

Managing salt in landscapes

Must have drainage to leach

Maintain soil moisture

Poor tree few roots dry soil Good tree many roots moist soil

- Decrease/adjust fertilizer
 - 。 slow release
 - o low salt index
 - acid-forming
 - foliar application for micronutrient deficiency

Monitor regularly

- Plant health
- Pest populations
- Soil pH and salts
- Foliage sodium, chloride

- Need a "technical" approach
- Maintain moist soil
- Leach soil to minimize salt
- Avoid wetting foliage
- Manage sodium with gypsum
- Decrease fertilizer application
- Monitor soil and plants
- Plan for increased repair and replacement of irrigation equipment

Embrace Change

- Before too long we will irrigate with recycled water or no water
 - We must learn how to use this resource
- Not all recycled water has high salts
 - Advocate for adequate recycled water quality
- Most drought tolerant plants have moderate to high salt tolerance
 - Phase out salt sensitive, high water use plants

